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Abstract - Condition monitoring has been a field of interest in the latest period, especially 
predictive maintenance, given the advances in artificial intelligence algorithms available in a great 
number of libraries. In the industrial sector, condition monitoring and fault diagnosis play a very 
important role in order to avoid as much as possible downtime. Usually, rotating motors are 
involved in the actuation of the machines used in industry; therefore bearings are an important 
part of the kinematic chain. Given that faults in bearings can be detected in the frequency spectrum 
at frequencies that can be mathematically computed based on the mechanical geometry, this paper 
proposes an approach to extract features for machine learning algorithms based on these computed 
frequencies and their harmonics. Since only a few frequencies are needed, the Goertzel algorithm 
can be used instead of the discrete Fourier transform to give a computational boost and have the 
feature extraction algorithm available on embedded systems. 
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1. Introduction 
 
Condition monitoring gets more and more attention 
nowadays as the hardware and software 
advancements provide more power and more 
efficient ways to assess whether a machine has a 
fault or not. Of course, condition monitoring and 
fault diagnosis mean, besides fault detection, an 
identification of the fault and the part of the machine 
that is broken. The importance of detecting an early 
fault can save a lot of money, as maintenance can be 
properly scheduled and the downtime of a machine 
can be decreased. 

In [1], Natu describes the number of faults that 
can appear in a rotating machine per part: 40% 
bearing faults, 38% stator faults, 10% rotor faults, 
others 12%. Since the majority of the faults occur in 
bearings, it is of high importance to have these parts 
monitored, as an issue in these rolling elements is 
usually provoked by another component or suggests 
improper lubrication or wearing-off, in which case 
the bearing has to be repaired or replaced so that 
other components are not affected in time. In 
literature there are many algorithms described 
which usually use the spectrum analysis on which 
different filter banks are applied, as in [2], where mel 
filter banks are used to extract features as mel 
cepstral coefficients that are later used in an 
algorithm that uses gaussian mixture models and 
kurtosis. Kurtosis is successfully used as well in [3] 
alongside envelope spectrum analysis.  
 

 
In [4], Nabhan et al. summarize fault detection 
techniques for ball bearings and shows that 
vibration measurements and spectrum analysis 
techniques are the most useful tools for fault 
diagnosis in rolling bearings. Since most of these 
techniques rely on the Fast Fourier Transform (FFT), 
which in acquisition and signal processing devices is 
done as the Discrete Fourier Transform (DFT), a 
more efficient algorithm can be used to extract 
specific frequencies information that doesn’t have to 
deal with spectral leakage and is not dependent of 
the number of points of the DFT. 
 

2. Bearing Fault Condition 
 

2.2 Rolling bearing description 
 

A rolling bearing is a rotating machine element 
that enables the movement by reducing friction and 
handles the stress coming from the linked 
components. In [5], bearing fault spectral analysis as 
well as other methods are described. In section 4.3, it 
is explained that a fault can be indicated if there is a 
peak at the fundamental fault frequency and the 2nd 
harmonic of this frequency; also, if there is no peak 
at the fundamental fault frequency, but there are 
peaks in the next harmonics, then the fault is real. In 
figure 1 and figure 2, the geometric variables that 
help finding the fundamental fault frequencies are 
shown: 
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Figure 1: Bearing elements 

 

 
Figure 2: Bearing ball 

 

2.3 Types of faults in bearings 
 

Given the geometries in the above figures, in [5] 
the causes of the bearing failures are described: bad 
lubrication, heavier load than expected, wear off 
because of time, misplacement of shaft, etc. Initially, 
bearing fatigue results in shear stresses below the 
load-carrying surface. In time, these shears turn to 
cracks in the exterior surface and as the load goes 
over them, fragments are ripped apart from the 
bearing. This type of fault is usually assessed 
through vibrations since mechanical waves that are 
produced by the cracks get higher amplitude as time 
goes. Surface distress is another type of fault that can 
produce cracks and it’s usually provoked by 
improper lubrication or heavier load. 
To diagnose properly a bearing fault, the following 
bearing frequencies can be calculated: 

 Ford = Frequency Outer Race Defect 
 Fird = Frequency Inner Race Defect 
 Fbd = Frequency Ball Defect 
 Fc = Frequency Cage 

 
Based on figure 1, we can determine the following 
variable as the pitch diameter: 

 
(1) 

The above described frequencies can be computed as 
follows: 

 
(2) 

 
(3) 

 

(4) 

 
(5) 

Where: 
 n is the number of balls 
 Bd is the ball diameter 
 β is the contact angle 
 frotation is the rotation frequency of the shaft in 

RPM 
Further, these base frequencies and their 

multiples will be of interest when computing the 
DFT magnitude using the Goertzel algorithm. 
 

3. Goertzel Algorithm 
 

3.2 Standard Goertzel algorithm 
 

As shown in [6] by Sysel & Rajmic, the original 
algorithm described by Goertzel in [7] that computes 
the DFT term of a signal x[n] with length N can be 
treated as a discrete linear convolution between the 
signal x[n] and hk[n] so that if the result of the 
convolution is yk[n], then: 

 

(6) 

Equation (6) is derived from the fact that hk can be 
expressed as: 

 
(7) 

 
As Sysel and Rajmic further show in their paper, 
equation (6) can be treated as an IIR linear system 
with the impulse response hk[n]; the output sample 
N of this filter is the desired DFT component. 
Described as a second order IIR filter using 
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differences, the equation of the filter can be written 
using state variables: 

 
(8) 

 
With the final output being: 

 
(9) 

 
As the author himself mentioned, only N 
multiplications and 2N additions are needed. 
 

3.3 Goertzel algorithm compared to the DFT 
 

There are multiple advantages of the Goertzel 
algorithm over the DFT under certain conditions. If K 
< 4/7N [6], where K is the number of frequencies in 
which we’re interested in, then the Goertzel 
algorithm is superior in computation speed to the 
DFT.  

Another advantage of the Goertzel algorithm is 
that one can inspect a signal of length N without 
bothering that N is a power of 2 (case in which DFT 
is computationally fast). 

Also, while inspecting the spectrum, based on the 
sampling frequency and the number of samples we 
don’t always have the correct magnitude of a certain 
frequency since it can’t be represented by the DFT 
due to spectral leakage (e.g. if we have a sampling 
frequency of 12 kHz with 1024 number of points, the 
frequency per bin of the DFT would be 12kHz / 1024 
= 11.71 Hz per bin so that if we want to know the 
magnitude of the sinusoid with a period of 115 Hz, 
this would be leaked to the neighboring frequency 
bins of 117.1 Hz and 105.39Hz).  

 

3.4 Generalized Goertzel algorithm 
 

With a small computation expense, in [6] a 
generalized Goertzel algorithm is proposed that can 
use K as a real number, not only as an integer. This is 
helpful in bearing fault diagnosis case because the 
frequencies computed will most probably be real 
numbers since the cosine function is involved and 
also division to different numbers of different 
quantities. 
  

4. Feature Extraction and Results 
 

4.2 Proposed algorithm 
 
The proposed algorithm in this paper is a very 

simple one, yet it’s one that can be computationally 
efficient and can be used to extract features for a 
machine learning algorithm, be it a multi-class 
identifier like a neural network or just an anomaly 
detection algorithm using gaussian distribution to 
assess whether the values recorded in the harmonics 
of the fault frequencies are part of the side 

probabilities of the normal distribution. The 
algorithm can be described in the following steps: 

 Find the rotation frequency of the system that 
rotates the bearing 

 Find the specifications of the bearing to be 
monitored 

 Compute the frequencies described in (2), (3), 
(4), (5) 

 Compute the harmonics of the frequencies up to 
10 harmonics (as described [5], the magnitudes 
should rise in up to the 4th harmonic, but it’s 
echoes should be visible in the higher spectrum 
as well) 

 Apply the Goertzel algorithm on the computed 
frequencies to extract the DFT components and 
computer the squared length of the vector 
described by the components 

 Split the computed harmonics per fault or use 
them all as features, depending on the chosen 
machine learning algorithm 

In figure 3 we can see the flowchart for the 
algorithm. 

 
Fig. 3. Algorithm flowchart 

 
4.3 Experimentation 
 

To check the algorithm’s results, the data 
obtained in the experimentation done by Lou and 
Loparo in [8] was used. The data comes from 
Rockwell Science Center and it’s available on [9]. For 
the experiments, a 2 hp Reliance Electric motor was 
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used and acceleration data was fetched from the 
motor bearings. 

Faults were made to the motor bearings using 
electro-discharge machining (EDM). Faults 
diameters ranged from 0.007 to 0.040 inches and 
data acquisition was made at 12 kHz for bearings in 
normal conditions and faulty conditions at different 
speeds of the motor. Also, tables with fault 
frequencies are available directly on this resource so 
that the computations were easily made. Two 
bearings were used on the drive end and fan end. 

The proposed algorithm will be applied on the 
drive end bearing (6205-2RS JEM SKF, deep groove 
ball bearing), for a motor speed of 1797 rpm. 

In table 1, the bearing’s data is presented and in 
table 2 the fault frequencies for 1797 rpm: 
 

Table 1. Bearing data in mm 
Inside 
diameter 

Outside 
diameter 

Thickness Ball 
diameter 

Pitch 
diameter 

25 52 15 7.94 39.03 

 
Table 2. Bearing fault frequencies (Hz) for 1797 rpm 

Ford Fird Fbd Fc 

107.36 162.18 141.16 11.92 

To be noted that in the data analysis, since there 
were no cage faults, the Fc was ignored. 
 

4.4 Results 
 

The goal in fault diagnosis is to detect the fault as 
early as possible, so the important data is the one for 
the faults with the diameter of 0.007 inches. 
However, also the 0.014 faults were added for 
comparison. 

In the following figures, ball fault, inner race fault 
and outer race fault data is shown in comparison 
with the normal data. The original data was split into 
batches of 5000 points each which is the equivalent 
of 0.41 ms. Here we can see that the Goertzel 
algorithm has no restriction regarding the number of 
points, nor the computed frequencies. 
 

 
Fig. 4. Ball fault and normal data in 0.007 inches fault 

diameter  

 
Fig. 5. Ball fault and normal data in 0.014 inches fault 

diameter 
 
 

 
Fig. 6. Inner race fault and normal data in 0.007 

inches fault diameter 
 
 

 
Fig. 7. Inner race fault and normal data in 0.014 

inches fault diameter 
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Fig. 8. Outer race fault and normal data in 0.007 inches fault diameter 

 

 
Fig. 9. Outer race fault and normal data in 0.014 inches fault diameter 

 

4.5 Evaluating the features with a simple 
probabilistic model 

 

For evaluating the features, an anomaly detection 

algorithm is proposed to check if these features have 

a Gaussian distribution.  

By computing the mean vector and the 

covariance matrix, the probability density function of 

the multivariate Gaussian distribution can be 

computed.  

Using only the normal data to train the model, the 

probability histogram would look like in figure 10: 

 
Fig. 10. Anomaly detection model 
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As it can be seen, the features do not meet the 
requirements for a Gaussian distribution, so 
therefore just this simple algorithm would not do to 
use these features out of the box. 
 

5. Conclusions and Future Work 
 

As it can be seen in figures 4 and 5 faults can be 

separated from the normal behavior in multiple 

training examples with the mention that for this type 

of fault (ball fault), as the fault is small in diameter, 

the magnitude is very small compared to the 0.014 

inches fault but it can be separated from the normal 

data magnitudes. For the other type of faults (visible 

in figures 6 to 9), the faulty data can be easily 

separable from the normal data. 

Therefore we can conclude that the proposed 

algorithm can be used to extract features for fault 

diagnosis in bearings without using the DFT, but a 

more computational efficient algorithm. The same 

approach can be used for other mechanical parts 

where fault frequencies can be computed. 

As it was shown in 4.4, using simple algorithms 

sometimes is not enough to model extract useful 

information from an already computational-efficient 

algorithm. 

In the future, the features will be tested with 

different artificial algorithms in order to assess its 

accuracy based on the way the features are 

separated and classify what algorithms are worth 

using with this type of features. 
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