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Abstract – An intention of this article is to present a technical implementation of control of a small 
mobile 3-Pi robot which moving in a maze along a predefined guide line. To acquire the robotic car 
position information, the reflectance infra-red sensors serve as input sensors. The control of the 
direction of the robot's movement is performed by a single-layer neural network including two 
neurons. The weights (memory) of the neurons are adapting with respect to input sensors signals 
and the output calculated via Hebbian learning. Based on previous experiments, activation function 
bipolar sigmoid performs the best for a maze solving problem. 
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1. Introduction 
 
A movement control of autonomous vehicles and 
mobile robots is in the centre of attention for many 
years. An applicability of these equipments in service 
and exploration activities or in conditions unsuitable 
or dangerous for human demands to ensure reliable 
movement of the mobile robot according to 
navigation requirements.  

As for the movement direction along the guide 
line controlled by the neural network, it is necessary 
to process the data from the input sensors quickly 
and as accurately as possible, with the smallest 
possible deviation of the calculated data from the 
expected data. For this reason, the aim is to achieve 
the smallest possible learning error when learning 
neurons so that the robot can follow the guide line as 
accurately as possible. 
  

2. Movement Control Methods for Mobile 
Robots  

 
Nowadays, the robot control subsystem can be 
implemented by software using the main following 
methods: 
• by evaluating the data from the input sensors 

based on various software conditions (if, switch), by 
means of which the input data (input vector) from 
the robot sensors are assigned the required outputs 
(e.g. motors control); 
• using PID controllers, where the input data 

(input vectors) are compared to the expected value 
and the difference of these values determines the 
size of the feedback control e.g. motors [1–3] – see 
Figure 1; 

• applying a neural network (NN) [1,2,4]. So-
called weights (neuron memory) are calculated 
depending on the data from the input sensors (input 
vector) and the expected outputs in the process of 
neurons learning. During robot operation, the 
control subsystem calculates the robot’s response to 
the input vectors based on the weights and input 
vector. The mathematical model of NN is explained 
in more detail in text that follows. 
 

 

Figure 1:  An example of electric motor control using a 
PID controller, adapted from [1]. 

 
Navigation techniques that deal with specific 

problems of path planning and optimization in 
a complex environment, such as different Artificial 
Intelligence methods, fuzzy logic systems, Neural 
Networks (NN), neuro-fuzzy and computing 
techniques like genetic algorithms, nature-inspired 
computing technique, Ant Colony Optimization, and 
Particle Swarm Optimization, are mentioned in 
a review article [4].  
 Monitoring the robot position includes an 
applying an appropriate sensing method. 
A comprehensive overview of sensors classification, 
their characteristics and utilization of sonar, laser 
and infrared sensors for detecting position can be 
found in [2]. Reflectance infrared sensors or single-
line video camera are used to monitor the guide line.  
 The method of creating a map of the environment 
is also implemented for the faster movement along 
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the guide line [2–5]. Motion subsystem sensors – 
encoders – are used to calculate the travelled 
distance and sensors of the robot's motion 
subsystem navigate the robot.  
 The most common method of navigation having 
its place among the relative navigation methods is 
odometry [1–3]. The robot updates its position and 
records it on a map of the environment. Using the 
environment map, e.g. the robotic car is able to move 
very quickly along the guide line. Figure 2 depicts 
the brief scheme of navigation process based on 
localization and mapping [2]. 

 
Figure 2: The background concept of navigation via 

map-based localization [2]. 

Several well-known maze exploration 
algorithms are briefly described in [6]. There is also 
presented an implementation of a maze solving 
robotic vehicle built on Arduino UNO platform, 
equipped with three ultrasonic sensors, two electro-
mechanical encoders, and a motion tracking device 
consisted of 3-axis accelerometer and 3-axis 
gyroscope for detection of location in the maze. 

  

3. Implementation of Hebbian learning 
in NN  
 
Principal navigation problems such as recognition, 
adaptation and action are very similar to cognitive 
tasks of human brain and an artificial neural 
network representing a massive system of parallel 
distributed processing elements (neurons) linked in 
a graph topology can deal with them. After learning, 
the neural network can express the knowledge 
implicitly in the weights associated to the inputs of 
neuron [7].  

In general, the neuron activity can be modelled as 
function of n input variables (input vectors 

 Tnij x,....,x,....,x,x 21x  ) which transform m 

vectors  mj ,.....,,....,, xxxxX 21 to the output vector 

 mj y,...,y,....,y,y 21Y  with binary value 

elements.  

In addition, an input that is connected to value 1 
with the weight called bias (named b), is assigned to 
the neuron. Value b is usually related with a 
postsynaptic neuron threshold (b = −θ). 

The weighted linear combination of the inputs 
(1) represents an overall stimulus – a neuron 
potential. The weights wi carry information on 
network learning process which is based on 
a sequential adaptation of neuron weights.  
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Finally, the activation function f (e.g.  Sgn(zj) or 
sigmoid functions) converts the inner neuron 
potential (1) to output expressed in the form (2). 
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Considering Hebbian learning rule, for more than 
one neuron a new weight wij (t+1) is changed with 
respect to the expression (3), where xi and yj are the 
output values of neurons i and j, respectively, which 
are connected by the synapse wij, and η is the 
learning rate (xi is the input to the synapse) [7].  

)t(y.)t(x.)t(w)t(w jiijij 1             (3) 

If the network includes only a single neuron, the 
weight wi is adapted in the form (4) and bias b with 
respect to (5). 

)t(x..)t(w)t(w iii  1             (4) 

 .)t(b)t(bi 1 ,                                 (5) 

Where:        
)t(y)t(o                                                             (6) 

The value  corresponds to the difference (6) 
between the expected network response o(t) and its 
actual calculated response y(t) [1]. 

Hebbian learning takes part successfully 
in learning the simplest single-layer neural networks 
that linearly separate input vectors of a training set 
into two classes.  An example of design of neural 
network aimed to such type of classification [1] with 
respect to the network structure and its learning is 
described below. A typical structure of a single-layer 
single-neuron network with two inputs and logical 
function AND is shown in Figure 3. 

 
Figure 3: An illustration of a single-neuron network 

structure for logical AND function 
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In a first step, all inputs are summed by expression 

(1). The resulted value zj enters as an argument to 

the activation function – the unit step function in this 

case. The output o as an expected network response 

to inputs x1, x2 meets the truth table of logical 

operation AND shown in Table 1. The actual 

calculation of weights (an adaptation) and bias takes 

place until the ∆ value is zero for all input vectors xi 

(there are four ones in our example in Table 1: x1 = 

[0,0], x2 = [0,1], x3 = [1,0] x4 = [1,1]).  

 
Table 1. Input vectors and expected outputs of the 

network training set for logical operation AND  
AND 
x1 x2 o 
0 0 0 
1 0 0 
0 1 0 
1 1 1 

 
Regarding a geometric point of view, completed 
learning process means finding a hypersurface in a 
space of input vectors that separates individual 
classes [1]. 

The analytical form of hypersurface is 
determined by equation (7). 
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If we consider two input vectors, the 
hypersurface represents a line in the plane, 
perpendicular to the weight vector. Calculated values 
for an identification line which determines a linear 
separability of space applying weights and bias w = 
[0.7, 0.3], b = 0.9 are x1 = 0.9/0.7 = 1.28, x2 =0.9/0.3 = 
= 3. These values determine the axis coordinates for 
both of points belonging the straight line which 
linearly separates plane points into two classes (see 
Figure 4). The class “0“ means inhibition of neuron 
activity and class “1“ its activation.  

The whole learning process of neuron according 
to logical operation AND is presented in Table 2. In 
the last four rows of Table 2, it can be seen that value 
of learning error delta ∆ equals zero for all 

combinations of input vectors and expected outputs. 
Network learning is completed. The result of the 
value calculation is one of the possible, because the 
initialization of the weights and bias is random:  w = 
[0.2, 0.3], b = 0.1. 

 
 

Table 2. The adaptation process of weights calculation for AND operation 
 

 
 

Figure 4:  Division of the plane into classes "0" and "1" according to the results in Table 2 
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4. Applying a Neural Network for the 
Movement of a 3-Pi Robotic Car Control 
using Activation Function Bipolar 
Sigmoid  
 
The scheme in Figure 5 presents an applied single-
layer network consisted of two neurons, which is 
used to control the 3-Pi robot motion in the maze. 
One neuron is reserved for one motor. The neural 
network has five inputs. The inputs are generated by 
infrared sensors for sensing the black guide line. 

 
Figure 5:   The scheme of applied neural network with 

activation function bipolar sigmoid  
 

Five inputs for two neurons allowed 32 

combinations of zeros and ones for possible network 

inputs. Actually, the sufficient number for well-

defined robotic car movement in the maze was ten 

combinations. Therefore, we designed a table of only 

ten input vectors and an expected robot motion 

(Figure 6,7) for the bipolar sigmoid (hyperbolic 

tangential [2]) activation function (8).  
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1                    (8) 

This function controlled of motor turning in two 

directions – forward and back. The value –1 ensured 

back direction of an engine rotation, the value 1 

forward direction, respectively. All calculated values 

of weights and bias entered into the robot control 

subsystem. The weight coefficients w1,1 to w1,5 were 

the weights for the individual inputs of neuron 

which controlled the left motor (LM). Similarly, w2,1 

to w2,5 were the weights for the individual inputs of 

neuron for the right motor control (RM).  

The proposed input vectors were sufficient as the 

training set for the movement of the 3-Pi robot in the 

maze. With a large number of input vectors, it is not 

possible to use Hebbian learning because the 

training set is not linearly separable. In this case, you 

need to use a multi-layered network such as e.g. 

Back-Propagation type. 

The results of calculation of the weights (neurons 

memory) for each neural network neuron with 

bipolar sigmoid activation function are presented 

in Figure 6. Besides the weights, there are also input 

vectors with expected and calculated values.  

The letter “o” indicates the expected value at the 
output of individual neurons and the letter “y” 
represents the calculated value at the output of 
individual neurons.  

The letter “d “indicates a learning error ∆ (delta). 

Because the learning error ∆ equals 0.001, the 

calculated weight coefficients will provide practically 

the same value at the output of the individual 

neurons as the expected values. 

 

 
Figure 6:   Input vectors and calculated weights for 3-

Pi robotic car motion in the maze 
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Figure 7 shows the values of ten input vectors 

transmitted by five infrared sensors. The set of input 

vectors represented the training set for neural 

network.  

The white area was evaluated as logical 0 by 

infrared sensors, the black area as logical 1, 

respectively.  

 

 

 
Figure 7:   Applied input vectors for the robotic car movement along the line 

 

5. Technical Implementation of the 
Robotic Car Motion in the Maze and 
Results 
 
The shape of the tested maze used in experiment is 

depicted in Figure 8. The beginning of the track is 

marked "ŠTART" and the end of the maze is marked 

with a wide transverse black strip.  

The robot goes through the whole maze until it 

finds the end (exit) of the maze.  

The robot stops on a wide transverse black tape. 

We used a 3-Pi two-wheeled robotic car by Pololu 

[8] (see Figure 9 and Figure 10 for the top and 

bottom view) to verify the functionality of a designed 

neural network with a bipolar sigmoid activation 

function.  Five reflectance infra-sensors were used to 

sense the black guide line. An 8-bit microcontroller 

ATMEGA328P by ATMEL [8] controlled the 

movement of the 3-Pi robotic car. All main 

components can be seen from the bottom view 

in Figure 10. 
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As it moves along the black line, the robotic car 
detects the reflection of infrared light from the area 
below it with its infrared sensors. Because the 
reflection of infrared light from a black surface is 
different from that of a white surface, a different 

voltage appears at the output of the infrared sensors. 
The voltages from the infrared sensors 
were digitized, and they represented the input 
vectors into the table of the expected movement of 
the mobile robot. 

 

 
Figure 8: The maze 

 
The input vector and weights were processed by 

the expression (1). The resulted values zj entered 
directly to the robot's motion subsystem. The 
response of neural network to input vector X was yj, 
and the motor speed was yj multiplied by maximal 
motor speed then. The result of this activity was the 
movement of the robot along the path.  

As for testing applying different activation 
functions, their comparing showed that neural 
network with linear and sigmoid activation functions 
in the role of control element did not perform 
correctly – the robotic car did not find the path 
through the maze. 

 

 

 

Figure 9: Top view of a 3-Pi robotic car [8] 
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Figure 10: Bottom view of a 3-Pi robotic car [8] 

 
Figures 11 and 12 depict the expected and 

calculated values of network response to ten input 
vectors using Hebbian learning with a learning error 
∆ = 0.001 and learning rate η = 0.5 for the individual 
motors. Applying the calculated values in the control 
of both of motors led to the smooth and precise 
movement of the robotic car along the guide line 
in the tested maze.  

 

 
 

 

Figure 11:   Comparison of expected (a) and calculated 
(b) values for the left motor of the robotic car 

 

 
 

 
Figure 12:   Comparison of expected (a) and calculated 

(b) values for the right motor of the robotic car 

 
6. Conclusions 
 

The proposed single-layer neural network consisted 

of two neurons with five inputs for both of them and 

bipolar sigmoid activation function works well for 

the solving movement of a 3-Pi robot in the maze or 

along a circular or oval path determined by guide 

line too. Experiments with different activation 

functions showed that the best choice of activation 

function for implementation in this type of control is 

bipolar sigmoid function when moving a mobile 

robot in the maze. 

 

a 

b 

a 

b 
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Except for a simple technical solution of the maze 

problem, the demonstration of robotic car 

movement in the maze can assist as a good 

motivation element for educational purposes. All 

obtained results and the simple technical 

implementation suit in subjects focused to neural 

networks theory and its application in the field of 

mobile robot control. 

For the movement of a robotic car on more 

complex tracks, where the control subsystem of the 

robotic car has to solve not only curves, but also to 

reduce the speed in curves so that the car does not 

run out of track, retarders, intersections and hills, it 

is necessary to use multilayer networks.  

For multi-layer networks with a larger number of 

neurons in the layers and a larger number of inputs, 

it is not possible to manually define the parameters 

of such a network and therefore some of the existing 

computational algorithms are used, the best known 

is the "Back-Propagation" algorithm. It is a two-layer 

or multi-layer network formed by neurons with 

a differentiable activation function. The sigmoid 

function in the form y=1/(1+e-λz) is most often used 

as an activation function in this case. Future interest 

and the direction of experiments with driving 

a robotic car via a neural network will be connected 

to the use of such a multi-layer network for 

navigation in a more complex environment.  
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